Científicos construyen un robot para rastrear las redes comerciales entre plantas y hongos, revelando las cadenas de suministro subterráneas de la naturaleza

El equipo SPUN
Comparte este artículo
26 de febrero de 2025

New research uses advanced robotics to track the hyper-efficient supply chains formed between plants and mycorrhizal fungi as they trade carbon and nutrients across the complex, living networks that help regulate the Earth’s atmosphere and ecosystems.

enlace al artículo
https://www.dropbox.com/scl/fi/m8t6bh7bw1qb0chh25l18/Travelling-Fungal-Wave-Nature-2025.pdf?rlkey=0gbll8fim8x5ui2qdmjgck4sm&st=ra7o8vzg&dl=0
  • Mediante el seguimiento de medio millón de autopistas fúngicas y los flujos de tráfico dentro de ellas, los investigadores describen cómo las plantas y los hongos simbióticos construyen cadenas de suministro eficientes.
  • El equipo construyó un robot de obtención de imágenes que les permitió recopilar datos de microscopía de 100 años en menos de 3 años
  • Work advances our understanding of how fungi move billions of tons of CO2 into underground ecosystems each year

New research published in the journal Nature on February 26, 2025 uses advanced robotics to track the hyper-efficient supply chains formed between plants and mycorrhizal fungi as they trade carbon and nutrients across the complex, living networks that help regulate Earth’s atmosphere and ecosystems.

Travelling waves, traffic flows, and navigating pathfinders

Understanding plant-fungal trade is urgent because these fungal networks draw down around 13 billion tons of CO2 per year into the soil -- equivalent to ~1/3 of global energy-related emissions.  More than 80% of plant species on Earth form partnerships with mycorrhizal fungi, in which phosphorus and nitrogen collected by fungi is exchanged for plant carbon. Despite their global importance, scientists did not understand how these brainless organisms construct expansive and efficient supply chains across their underground networks.  

El equipo internacional de 28 científicos descubrió que los hongos construyen una red micelial en forma de encaje que desplaza el carbono desde las raíces de las plantas en una formación ondulatoria. Para apoyar este crecimiento, los hongos mueven recursos desde y hacia las raíces de las plantas mediante un sistema de tráfico bidireccional, controlando la velocidad y la anchura del flujo de estas autopistas fúngicas según sea necesario. Para buscar más recursos, los hongos desplegaron ramas de crecimiento especiales como "pathfinders" microscópicos para explorar nuevos territorios, favoreciendo al parecer las oportunidades comerciales con futuros socios vegetales frente al crecimiento a corto plazo en el entorno inmediato. Los investigadores describen cómo estos comportamientos parecen estar coordinados por "reglas" locales sencillas que impiden al hongo "construir en exceso" y definen una "estrategia de onda viajera" única para el crecimiento, la exploración de recursos y el comercio.

“We’ve been mapping the decentralized decision-making processes of mycorrhizal fungal networks, exposing a hyper-efficient blueprint for an underground supply chain,” said Evolutionary Biologist and co-author Dr. Toby Kiers of Amsterdam’s Vrije Universiteit. “Humans increasingly rely on AI algorithms to build supply chains that are efficient and resilient. Yet mycorrhizal fungi have been solving these problems for more than 450 million years. This is the kind of research that keeps you up at night because these fungi are such important underground circulatory systems for nutrients and carbon.”

Advanced robotics to track fungal decision-making

Discovering these new fungal behaviors was only possible because the team built an imaging robot that ran 24/7 in Amsterdam, allowing measurements of how the fungi reshaped their trade routes over time and space. “We discovered that these fungi are constantly adapting their trade routes, adding loops to shorten paths so they could efficiently deliver nutrients to plant roots” said Dr. Thomas Shimizu, co-author and Biophysicist from the physics institute AMOLF in Amsterdam.

Similar to navigation apps tracking congestion, the team then measured “traffic flows” at specific coordinates in the fungal road system, quantifying how fast resources were flowing to and from the root, tracking more than 100,000 particle flows. “By using our robot instead of a human being, we cut the lab time from a century to around three years”, added Shimizu.

“Robotics is making it possible to study fungal behavior in unprecedented detail, and at an unprecedented scale,” said co-author Dr. Merlin Sheldrake. “These techniques open the door to future work to understand the ways that these living, sensing, networks regulate ecosystem function and the Earth’s nutrient cycles”.

Data critical for understanding carbon draw down

The data collected are becoming increasingly important as atmospheric CO2 increases. Scientists want to understand how fungal networks control flows of carbon belowground. Kiers, also Executive Director of the Society for the Protection of Underground Networks  (SPUN), the non-profit organization mapping Earth’s mycorrhizal networks adds, “Because these fungal networks are key entry points of carbon into global soils, we can now explore what triggers fungi to increase carbon flows underground.”

As in human supply chains, the efficiency of mycorrhizal fungal supply-chains depends on the ability of a network to produce and deliver goods to the right place, at the right time, at the lowest possible cost. Dr. Howard Stone, co-author and Professor of Mechanical and Aerospace Engineering at Princeton University adds “Understanding how these fungal networks adjust internal flows and resource trading to build supply chains in response to environment stimuli will be an important direction for future research”

Whether and how designers of human-built supply chains can learn from these principles evolved by plants and fungi over hundreds of millions of years is an exciting frontier. The team is now in the final stages of building a new robot which will increase data collection by a further 10x, allowing them to explore how fungal networks respond to rapid environmental change, including increases in disturbance and rising temperatures.

***

See the authors discuss their work in a video, here. Fungal images and flow videos for download here.

***

Full paper available: https://www.dropbox.com/scl/fi/m8t6bh7bw1qb0chh25l18/Travelling-Fungal-Wave-Nature-2025.pdf?rlkey=0gbll8fim8x5ui2qdmjgck4sm&st=ra7o8vzg&dl=0

“A travelling-wave strategy for plant–fungal trade” Nature https://www.nature.com/articles/s41586-025-08614-x

Research funded by the Human Frontier Science Program (HFSP), Netherlands Organization for Scientific Research (NWO), the Grantham Foundation, the Paul Allen Foundation, and the Schmidt Family Foundation.

Comparte este artículo